Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.30.450531

ABSTRACT

SARS-CoV-2 infects the respiratory tract, lung and then other organs. However, its pathogenesis remains largely unknown. We used RareScope Fluorescence Light Sheet Microscopy (FLSM) and fluorescent in situ hybridization of RNA (RNA-FISH) to detect SARS-CoV-2 RNA and dissemination kinetics in mouse blood circulation. By RNA-FISH, we found that SARS-CoV-2 RNA-positive leukocytes, including CD11c cells, appeared as early as one day after infection and continued through day 10 post infection. Our data suggest that SARS-CoV-2-permissive leukocytes contribute to systemic viral dissemination, and RNA-FISH combined with FLSM can be utilized as a sensitive tool for SARS-CoV-2 detection in blood specimens.


Subject(s)
Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.04.433919

ABSTRACT

Hematopoiesis is finely regulated to enable timely production of the right number and type of mature immune cells to maintain tissue homeostasis. Dysregulated hematopoiesis may compromise antiviral immunity and/or exacerbate immunopathogenesis. Herein, we report an essential and new role of ubiquitin X domain containing gene 3B (UBXN3B) in balancing myelopoiesis and lymphopoiesis. Ubxn3b deficiency (Ubxn3b-/-) results in a remarkable increase in myeloid cells and neutrophil-to-lymphocyte ratio, along with a reduction in lymphocytes in steady-state mice. This dysregulation is exacerbated during viral infection and renders mice highly vulnerable to severe lung pathology induced by severe acute respiratory syndrome coronavirus 2 and arthritis by arthritogenic alphaviruses. Ubxn3b-/- mice present normal type I IFNs, higher viral loads and inflammatory mediators, lower virus-specific immunoglobulin G and slower resolution of disease, when compared to Ubxn3b+/+ littermates. Mechanistically, Ubxn3b-/- mice have fewer multipotent progenitors and common lymphoid progenitors, but more common myeloid progenitors. In particular, the precursor and immature B cell numbers are dramatically decreased in the bone marrow of Ubxn3b-/- mice. These data demonstrate that UBXN3B signaling is essential for restricting viral infection and immunopathogenesis by maintaining hematopoietic homeostasis.


Subject(s)
Severe Acute Respiratory Syndrome , Virus Diseases , Arthritis
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.10.430677

ABSTRACT

The retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are the major viral RNA sensors that are essential for activation of antiviral immune responses. However, their roles in severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) infection are largely unknown. Herein we investigate their functions in human epithelial cells, the primary and initial target of SARS-CoV-2, and the first line of host defense. A deficiency in MDA5 (MDA5-/-), RIG-I or mitochondrial antiviral signaling protein (MAVS) greatly enhanced viral replication. Expression of the type I/III interferons (IFN) was upregulated following infection in wild-type cells, while this upregulation was severely abolished in MDA5-/- and MAVS-/-, but not in RIG-I-/- cells. Of note, ACE2 expression was ~2.5 fold higher in RIG-I-/- than WT cells. These data demonstrate a dominant role of MDA5 in activating the type I/III IFN response to SARS-CoV-2, and an IFN-independent anti-SARS-CoV-2 role of RIG-I.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Melanoma
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.22.109900

ABSTRACT

Viruses are the major aetiological agents of acute and chronic severe human diseases that place a tremendous burden on global public health and economy; however, for most viruses, effective prophylactics and therapeutics are lacking, in particular, broad-spectrum antiviral agents. Herein, we identified 2 secreted bacterial lipases from a Chromobacterium bacterium, named Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with a broad-spectrum virucidal activity against dengue virus (DENV), Zika virus (ZIKV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation of CbAE-1 in its lipase motif fully abrogated the virucidal ability. Furthermore, CbAE-2 presented low toxicity in vivo and in vitro, highlighting its potential as a broad-spectrum antiviral drug.


Subject(s)
HIV Infections , Drug-Related Side Effects and Adverse Reactions
SELECTION OF CITATIONS
SEARCH DETAIL